Comparació de l’ús de programari científic i eines d’art d’IA generativa: recerca exploratòria i agenda futura
DOI:
https://doi.org/10.46516/inmaterial.v10.240Paraules clau:
intel·ligència artificial generativa, programari científic, pràctica científica, pràctica creativa, interfícies d'usuariResum
La introducció de generadors d’imatges i text d’intel·ligència artificial generativa (IAG) ha atret una atenció renovada i significativa cap a les interfícies d’usuari textuals. Plataformes com ChatGPT i Midjourney generen, respectivament, text i imatges a partir d’instruccions verbals escrites pels usuaris en llenguatge natural i processades mitjançant models d’aprenentatge automàtic. L’ús del llenguatge natural en la IAG difereix de les interfícies habituals del programari científic, generalment operades a través de llenguatges de programació i de scripting. Tot i això, tant la ciència computacional com l’art generatiu, cadascuna a la seva manera, substitueixen els processos tradicionals “humits” per processos abstractes i desmaterialitzats.
A través d’una anàlisi de la literatura existent i de la recerca preliminar sobre aquestes pràctiques, aquest article analitza el potencial de la pol·linització creuada de principis i conceptes del programari científic i de l’art i disseny generatiu. L’objectiu és proposar nous enfocaments per al desenvolupament i l’ús d’aquestes eines, tenint en compte no només els paradigmes de les interfícies d’usuari en aquests sistemes, sinó també les similituds i diferències entre els dominis científic i de l’art i disseny. S’exploraran les tensions entre models oberts i tancats, objectivitat i subjectivitat, reproductibilitat i unicitat, que s’associen respectivament amb pràctiques científiques i creatives. Els resultats preliminars suggereixen la necessitat de polítiques i pràctiques en el desenvolupament de la IA generativa que involucrin els professionals de l’art i el disseny, i formes de reconèixer i recompensar la seva experiència en aquest àmbit.
Descàrregues
Referències
Ahmed, Z., Zeeshan, S. & Dandekar, T. (2014). Developing sustainable software solutions for bioinformatics by the “Butterfly” paradigm. F1000Research. https://doi.org/10.12688/f1000research.3681.2
Auld, T., Bridges, M., & Hobson, M. P. (2007). CosmoNet: Fast cosmological parameter estimation in non-flat models using neural networks. arXiv. https://doi.org/10.48550/arXiv.astro-ph/0703445
Bachelard, G. (1984). The new scientific spirit (Beacon paperbacks). Beacon Press. https://books.google.co.uk/books?id=L7faAAAAMAAJ
Beg, M., Lang, M. & Fangohr, H. (2022). Ubermag: Toward more effective micromagnetic workflows. IEEE Transactions on Magnetics, 58(2), 1–5. https://doi.org/10.1109/TMAG.2021.3078896
Bender, E. M., Gebru, T., McMillan-Major, A. & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623). ACM. https://doi.org/10.1145/3442188.3445922
Bender, S. M. (2023). Coexistence and creativity: Screen media education in the age of artificial intelligence content generators. Media Practice and Education, 1–16. https://doi.org/10.1080/25741136.2023.2204203
Boden, M. A. & Edmonds, E. A. (2009). What is generative art? Digital Creativity, 20(1–2), 21–46. https://doi.org/10.1080/14626260902867915
Byrne, U. (2023). A parochial comment on Midjourney. International Journal of Architectural Computing, 21(2), 374–379. https://doi.org/10.1177/14780771231170271
Cohen-Boulakia, S., et al. (2014). Distilling structure in Taverna scientific workflows: A refactoring approach. BMC Bioinformatics, 15(1), S12.
https://doi.org/10.1186/1471-2105-15-S1-S12
Davis, R. L., et al. (2023). Fashioning the future: Unlocking the creative potential of deep generative models for design space exploration. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1–9). ACM. https://doi.org/10.1145/3544549.3585644
Dongarra, J., et al. (2008). Netlib and NA-Net: Building a scientific computing community. IEEE Annals of the History of Computing, 30(2), 30–41. https://doi.org/10.1109/MAHC.2008.29
Fiannaca, A., et al. (2014). Knowledge organization for modelling workflows in Taverna environment. In 22nd Mediterranean Conference on Control and Automation (pp. 972–977). https://doi.org/10.1109/MED.2014.6961500
Goldman, S. (2023, June 20). Adobe Stock creators aren’t happy with Firefly, the company’s “commercially safe” gen AI tool. VentureBeat. https://venturebeat.com/ai/adobe-stock-creators-arent-happy-with-firefly-the-companys-commercially-safe-gen-ai-tool/
Guo, X., Dong, L. & Hao, D. (2024). RETRACTED: Cellular functions of spermatogonial stem cells in relation to JAK/STAT signaling pathway. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1339390
Hammond, G. (2024, July 26). AI start-up Anthropic accused of “egregious” data scraping. Financial Times. https://www.ft.com/content/07611b74-3d69-4579-9089-f2fc2af61baa
Hannay, J. E. et al. (2009). How do scientists develop and use scientific software? In 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering (pp. 1–8). https://doi.org/10.1109/SECSE.2009.5069155
Heaton, D., & Carver, J. C. (2015). Claims about the use of software engineering practices in science: A systematic literature review. In Information and Software Technology, 67, 207–219. https://doi.org/10.1016/j.infsof.2015.07.011
Heroux, M. A. (2022). Research software science: Expanding the impact of research software engineering. In Computing in Science & Engineering, 24(6), 22–27. https://doi.org/10.1109/MCSE.2023.3260475
Hettrick, S., et al. (2014). UK research software survey 2014. Zenodo. https://doi.org/10.5281/ZENODO.14809
Hinsen, K. (2013) Software Development for Reproducible Research. In Computing in Science & Engineering, 15. https://doi.org/10.1109/MCSE.2013.91.
Howison, J., & Herbsleb, J. D. (2011). Scientific software production: Incentives and collaboration. In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work (CSCW ’11) (pp. 513–522). ACM. https://doi.org/10.1145/1958824.1958904
Hunt, K. M. R. (2023). Could artificial intelligence win the next Weather Photographer of the Year competition? Weather, 78(4), 108–112. https://doi.org/10.1002/wea.4348
Iluz, S. et al. (2023). Word-as-image for semantic typography. ACM Transactions on Graphics, 42(4), Article 138. https://doi.org/10.1145/3592123
Ko, A. J. et al. (2011). The state of the art in end-user software engineering. ACM Computing Surveys, 43(3), Article 21. https://doi.org/10.1145/1922649.1922658
Kovalchuk, S. V. et al. (2012). Virtual Simulation Objects concept as a framework for system-level simulation. In 2012 IEEE 8th International Conference on E-Science (e-Science) (pp. 1–8). IEEE. https://doi.org/10.1109/eScience.2012.6404413
Koziol, M. (2023). 5 questions for Anton Troynikov: His company’s creation identifies the art behind AI-generated images. IEEE Spectrum, 60(5), 23. https://doi.org/10.1109/MSPEC.2023.10120687
Krafczyk, M. et al. (2019). Scientific tests and continuous integration strategies to enhance reproducibility in the scientific software context. In Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems (HPDC ’19) (pp. 23–28). ACM. https://doi.org/10.1145/3322790.3330595
Kuhn, T. S. & Hacking, I. (2012). The structure of scientific revolutions (4th ed.). The University of Chicago Press.
Kwon, D. (2024). AI-generated images threaten science — Here’s how researchers hope to spot them. Nature. Advance online publication. https://doi.org/10.1038/d41586-024-03542-8
Liu, V. (2023). Beyond text-to-image: Multimodal prompts to explore generative AI. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23) (pp. 1–6). ACM. https://doi.org/10.1145/3544549.3577043
Liu, V., Qiao, H. & Chilton, L. (2022). Opal: Multimodal image generation for news illustration. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (UIST ’22) (pp. 1–17). ACM. https://doi.org/10.1145/3526113.3545621
MacLeod, R. S., Johnson, C. R. & Matheson, M. A. (1992). Visualization of cardiac bioelectricity—A case study. In Proceedings Visualization ’92 (pp. 411–418). IEEE. https://doi.org/10.1109/VISUAL.1992.235178
Marcus, G. & Southen, R. (2024, November 11). Generative AI has a visual plagiarism problem. IEEE Spectrum. https://spectrum.ieee.org/midjourney-copyright
Murphy Quinlan, M. (n.d.). Introduction to data visualisation in Python. GitHub. Retrieved November 11, 2024, from https://github.com/ARCTraining/swd7-notes/
Ng, T. (2024, November 7). Adobe says it won’t train AI using artists’ work. Creatives aren’t convinced. Wired. https://www.wired.com/story/adobe-says-it-wont-train-ai-using-artists-work-creatives-arent-convinced/
PA Media. (2025, March 3). UK unions call for action to protect creative industry workers as AI develops. The Guardian. Retrieved April 24, 2025, from https://www.theguardian.com/technology/2025/mar/03/uk-unions-creative-industry-workers-artificial-intelligence-ai-copyright
Papa, L. et al. (2023). On the use of Stable Diffusion for creating realistic faces: From generation to detection. In 2023 11th International Workshop on Biometrics and Forensics (IWBF) (pp. 1–6). IEEE. https://doi.org/10.1109/IWBF57495.2023.10156981
Paul-Gilloteaux, P. (2023). Bioimage informatics: Investing in software usability is essential. PLOS Biology, 21(7), e3002213. https://doi.org/10.1371/journal.pbio.3002213
Pinto, G., Wiese, I. & Dias, L. F. (2018). How do scientists develop scientific software? An external replication. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER) (pp. 582–591). IEEE. https://doi.org/10.1109/SANER.2018.8330263
Queiroz, F. & Spitz, R. (2016). The lens of the lab: Design challenges in scientific software. The International Journal of Design Management and Professional Practice, 10(3), 17–45. https://doi.org/10.18848/2325-162X/CGP/v10i03/17-45
Thomas, D., & Gross, A. (2025, February 16). Copyright battles loom over artists and AI. Financial Times. Retrieved April 24, 2025, from https://www.ft.com/content/185e2e9d-2642-4b2b-b2e0-99751841b07a
Repenning, A., Basawapatna, A. & Escherle, N. (2016). Computational thinking tools. In 2016 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 218–222). IEEE. https://doi.org/10.1109/VLHCC.2016.7739688
Repenning, A. & Grabowski, S. (2023). Proompting is computational thinking. In Joint Proceedings of the Workshops, Work in Progress Demos and Doctoral Consortium at the IS-EUD 2023 co-located with the 9th International Symposium on End-User Development (IS-EUD 2023). CEUR-WS. https://ceur-ws.org/Vol-3408/short-s2-07.pdf
Segal, J., & Morris, C. (2008). Developing scientific software. IEEE Software, 25(4), 18–20. https://doi.org/10.1109/MS.2008.85
Sletholt, M. T. et al. (2012). What do we know about scientific software development’s agile practices? Computing in Science & Engineering, 14(2), 24–37. https://doi.org/10.1109/MCSE.2011.113
Sotnikov, V. and Chaikova, A. (2023) Language Models for Multimessenger Astronomy, Galaxies, 11(3), 63. Available at: https://doi.org/10.3390/galaxies11030063.
Thomas, D., & Gross, A. (2025, February 16). Copyright battles loom over artists and AI. Financial Times. Retrieved April 24, 2025, from https://www.ft.com/content/185e2e9d-2642-4b2b-b2e0-99751841b07a
Thomas, R. J. & Thomson, T. J. (2023). What does a journalist look like? Visualizing journalistic roles through AI. Digital Journalism, 1–23. https://doi.org/10.1080/21670811.2023.2229883
Thomas, R. J. & Thomson, T. J. (2023). What does a journalist look like? Visualizing journalistic roles through AI. Digital Journalism, 1–23. https://doi.org/10.1080/21670811.2023.2229883
Vartiainen, H. & Tedre, M. (2023). Using artificial intelligence in craft education: Crafting with text-to-image generative models. Digital Creativity, 34(1), 1–21. https://doi.org/10.1080/14626268.2023.2174557
Villareale, J., Cimolino, G. & Gomme, D. (2023). Playing with Dezgo: Adapting human-AI interaction to the context of play. In Proceedings of the 18th International Conference on the Foundations of Digital Games (FDG ’23) (pp. 1–5). ACM. https://doi.org/10.1145/3582437.3587198
Wiedemann, D. (2022). CalcOPP: A program for the calculation of one-particle potentials (OPPs). Zeitschrift für Kristallographie – Crystalline Materials, 237(4–5), 85–92.
https://doi.org/10.1515/zkri-2021-2053
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
Zhang, S. (2023). Dreambooth-based image generation methods for improving the performance of CNN. In 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI) (pp. 1181–1184). IEEE. https://doi.org/10.1109/ICETCI57876.2023.10176568
Zylinska, J. (2023). Art in the age of artificial intelligence. Science, 381(6654), 139–140. https://doi.org/10.1126/science.adh0575

Descàrregues
Publicades
Com citar
Número
Secció
Llicència
Drets d'autor (c) 2025 Francisco Queiroz

Aquesta obra està sota una llicència internacional Creative Commons Reconeixement-CompartirIgual 4.0.