Comparació de l’ús de programari científic i eines d’art d’IA generativa: recerca exploratòria i agenda futura

Autors/ores

DOI:

https://doi.org/10.46516/inmaterial.v10.240

Paraules clau:

intel·ligència artificial generativa, programari científic, pràctica científica, pràctica creativa, interfícies d'usuari

Resum

La introducció de generadors d’imatges i text d’intel·ligència artificial generativa (IAG) ha atret una atenció renovada i significativa cap a les interfícies d’usuari textuals. Plataformes com ChatGPT i Midjourney generen, respectivament, text i imatges a partir d’instruccions verbals escrites pels usuaris en llenguatge natural i processades mitjançant models d’aprenentatge automàtic. L’ús del llenguatge natural en la IAG difereix de les interfícies habituals del programari científic, generalment operades a través de llenguatges de programació i de scripting. Tot i això, tant la ciència computacional com l’art generatiu, cadascuna a la seva manera, substitueixen els processos tradicionals “humits” per processos abstractes i desmaterialitzats.

A través d’una anàlisi de la literatura existent i de la recerca preliminar sobre aquestes pràctiques, aquest article analitza el potencial de la pol·linització creuada de principis i conceptes del programari científic i de l’art i disseny generatiu. L’objectiu és proposar nous enfocaments per al desenvolupament i l’ús d’aquestes eines, tenint en compte no només els paradigmes de les interfícies d’usuari en aquests sistemes, sinó també les similituds i diferències entre els dominis científic i de l’art i disseny. S’exploraran les tensions entre models oberts i tancats, objectivitat i subjectivitat, reproductibilitat i unicitat, que s’associen respectivament amb pràctiques científiques i creatives. Els resultats preliminars suggereixen la necessitat de polítiques i pràctiques en el desenvolupament de la IA generativa que involucrin els professionals de l’art i el disseny, i formes de reconèixer i recompensar la seva experiència en aquest àmbit. 

Descàrregues

Les dades de descàrrega encara no estan disponibles.

Biografia de l'autor/a

Francisco Queiroz, School of Design, University of Leeds (Leeds, United Kingdom)

Francisco Queiroz és professor de Disseny d’Innovació Digital a la Universitat de Leeds, Regne Unit, especialitzat en disseny digital i interactiu, especialment en gamificació, tecnologies immersives i usabilitat de programari científic. Té més de 15 anys d’experiència en l’educació superior, amb una llicenciatura en Comunicació Social/Publicitat i un doctorat en Disseny per la Pontifícia Universitat Catòlica de Rio de Janeiro, Brasil, així com un màster en Disseny de Jocs Digitals per la University for the Creative Arts, Regne Unit. 

La seva recerca estableix ponts entre el món acadèmic i la indústria, explorant la ciència ciutadana gamificada i les aplicacions interdisciplinàries del disseny digital. El seu treball posa l’accent en el disseny centrat en l’usuari i en la integració d’eines digitals en àmbits diversos. 

Referències

Ahmed, Z., Zeeshan, S. & Dandekar, T. (2014). Developing sustainable software solutions for bioinformatics by the “Butterfly” paradigm. F1000Research. https://doi.org/10.12688/f1000research.3681.2

Auld, T., Bridges, M., & Hobson, M. P. (2007). CosmoNet: Fast cosmological parameter estimation in non-flat models using neural networks. arXiv. https://doi.org/10.48550/arXiv.astro-ph/0703445

Bachelard, G. (1984). The new scientific spirit (Beacon paperbacks). Beacon Press. https://books.google.co.uk/books?id=L7faAAAAMAAJ

Beg, M., Lang, M. & Fangohr, H. (2022). Ubermag: Toward more effective micromagnetic workflows. IEEE Transactions on Magnetics, 58(2), 1–5. https://doi.org/10.1109/TMAG.2021.3078896

Bender, E. M., Gebru, T., McMillan-Major, A. & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623). ACM. https://doi.org/10.1145/3442188.3445922

Bender, S. M. (2023). Coexistence and creativity: Screen media education in the age of artificial intelligence content generators. Media Practice and Education, 1–16. https://doi.org/10.1080/25741136.2023.2204203

Boden, M. A. & Edmonds, E. A. (2009). What is generative art? Digital Creativity, 20(1–2), 21–46. https://doi.org/10.1080/14626260902867915

Byrne, U. (2023). A parochial comment on Midjourney. International Journal of Architectural Computing, 21(2), 374–379. https://doi.org/10.1177/14780771231170271

Cohen-Boulakia, S., et al. (2014). Distilling structure in Taverna scientific workflows: A refactoring approach. BMC Bioinformatics, 15(1), S12.

https://doi.org/10.1186/1471-2105-15-S1-S12

Davis, R. L., et al. (2023). Fashioning the future: Unlocking the creative potential of deep generative models for design space exploration. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1–9). ACM. https://doi.org/10.1145/3544549.3585644

Dongarra, J., et al. (2008). Netlib and NA-Net: Building a scientific computing community. IEEE Annals of the History of Computing, 30(2), 30–41. https://doi.org/10.1109/MAHC.2008.29

Fiannaca, A., et al. (2014). Knowledge organization for modelling workflows in Taverna environment. In 22nd Mediterranean Conference on Control and Automation (pp. 972–977). https://doi.org/10.1109/MED.2014.6961500

Goldman, S. (2023, June 20). Adobe Stock creators aren’t happy with Firefly, the company’s “commercially safe” gen AI tool. VentureBeat. https://venturebeat.com/ai/adobe-stock-creators-arent-happy-with-firefly-the-companys-commercially-safe-gen-ai-tool/

Guo, X., Dong, L. & Hao, D. (2024). RETRACTED: Cellular functions of spermatogonial stem cells in relation to JAK/STAT signaling pathway. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1339390

Hammond, G. (2024, July 26). AI start-up Anthropic accused of “egregious” data scraping. Financial Times. https://www.ft.com/content/07611b74-3d69-4579-9089-f2fc2af61baa

Hannay, J. E. et al. (2009). How do scientists develop and use scientific software? In 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering (pp. 1–8). https://doi.org/10.1109/SECSE.2009.5069155

Heaton, D., & Carver, J. C. (2015). Claims about the use of software engineering practices in science: A systematic literature review. In Information and Software Technology, 67, 207–219. https://doi.org/10.1016/j.infsof.2015.07.011

Heroux, M. A. (2022). Research software science: Expanding the impact of research software engineering. In Computing in Science & Engineering, 24(6), 22–27. https://doi.org/10.1109/MCSE.2023.3260475

Hettrick, S., et al. (2014). UK research software survey 2014. Zenodo. https://doi.org/10.5281/ZENODO.14809

Hinsen, K. (2013) Software Development for Reproducible Research. In Computing in Science & Engineering, 15. https://doi.org/10.1109/MCSE.2013.91.

Howison, J., & Herbsleb, J. D. (2011). Scientific software production: Incentives and collaboration. In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work (CSCW ’11) (pp. 513–522). ACM. https://doi.org/10.1145/1958824.1958904

Hunt, K. M. R. (2023). Could artificial intelligence win the next Weather Photographer of the Year competition? Weather, 78(4), 108–112. https://doi.org/10.1002/wea.4348

Iluz, S. et al. (2023). Word-as-image for semantic typography. ACM Transactions on Graphics, 42(4), Article 138. https://doi.org/10.1145/3592123

Ko, A. J. et al. (2011). The state of the art in end-user software engineering. ACM Computing Surveys, 43(3), Article 21. https://doi.org/10.1145/1922649.1922658

Kovalchuk, S. V. et al. (2012). Virtual Simulation Objects concept as a framework for system-level simulation. In 2012 IEEE 8th International Conference on E-Science (e-Science) (pp. 1–8). IEEE. https://doi.org/10.1109/eScience.2012.6404413

Koziol, M. (2023). 5 questions for Anton Troynikov: His company’s creation identifies the art behind AI-generated images. IEEE Spectrum, 60(5), 23. https://doi.org/10.1109/MSPEC.2023.10120687

Krafczyk, M. et al. (2019). Scientific tests and continuous integration strategies to enhance reproducibility in the scientific software context. In Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems (HPDC ’19) (pp. 23–28). ACM. https://doi.org/10.1145/3322790.3330595

Kuhn, T. S. & Hacking, I. (2012). The structure of scientific revolutions (4th ed.). The University of Chicago Press.

Kwon, D. (2024). AI-generated images threaten science — Here’s how researchers hope to spot them. Nature. Advance online publication. https://doi.org/10.1038/d41586-024-03542-8

Liu, V. (2023). Beyond text-to-image: Multimodal prompts to explore generative AI. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23) (pp. 1–6). ACM. https://doi.org/10.1145/3544549.3577043

Liu, V., Qiao, H. & Chilton, L. (2022). Opal: Multimodal image generation for news illustration. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (UIST ’22) (pp. 1–17). ACM. https://doi.org/10.1145/3526113.3545621

MacLeod, R. S., Johnson, C. R. & Matheson, M. A. (1992). Visualization of cardiac bioelectricity—A case study. In Proceedings Visualization ’92 (pp. 411–418). IEEE. https://doi.org/10.1109/VISUAL.1992.235178

Marcus, G. & Southen, R. (2024, November 11). Generative AI has a visual plagiarism problem. IEEE Spectrum. https://spectrum.ieee.org/midjourney-copyright

Murphy Quinlan, M. (n.d.). Introduction to data visualisation in Python. GitHub. Retrieved November 11, 2024, from https://github.com/ARCTraining/swd7-notes/

Ng, T. (2024, November 7). Adobe says it won’t train AI using artists’ work. Creatives aren’t convinced. Wired. https://www.wired.com/story/adobe-says-it-wont-train-ai-using-artists-work-creatives-arent-convinced/

PA Media. (2025, March 3). UK unions call for action to protect creative industry workers as AI develops. The Guardian. Retrieved April 24, 2025, from https://www.theguardian.com/technology/2025/mar/03/uk-unions-creative-industry-workers-artificial-intelligence-ai-copyright

Papa, L. et al. (2023). On the use of Stable Diffusion for creating realistic faces: From generation to detection. In 2023 11th International Workshop on Biometrics and Forensics (IWBF) (pp. 1–6). IEEE. https://doi.org/10.1109/IWBF57495.2023.10156981

Paul-Gilloteaux, P. (2023). Bioimage informatics: Investing in software usability is essential. PLOS Biology, 21(7), e3002213. https://doi.org/10.1371/journal.pbio.3002213

Pinto, G., Wiese, I. & Dias, L. F. (2018). How do scientists develop scientific software? An external replication. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER) (pp. 582–591). IEEE. https://doi.org/10.1109/SANER.2018.8330263

Queiroz, F. & Spitz, R. (2016). The lens of the lab: Design challenges in scientific software. The International Journal of Design Management and Professional Practice, 10(3), 17–45. https://doi.org/10.18848/2325-162X/CGP/v10i03/17-45

Thomas, D., & Gross, A. (2025, February 16). Copyright battles loom over artists and AI. Financial Times. Retrieved April 24, 2025, from https://www.ft.com/content/185e2e9d-2642-4b2b-b2e0-99751841b07a

Repenning, A., Basawapatna, A. & Escherle, N. (2016). Computational thinking tools. In 2016 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 218–222). IEEE. https://doi.org/10.1109/VLHCC.2016.7739688

Repenning, A. & Grabowski, S. (2023). Proompting is computational thinking. In Joint Proceedings of the Workshops, Work in Progress Demos and Doctoral Consortium at the IS-EUD 2023 co-located with the 9th International Symposium on End-User Development (IS-EUD 2023). CEUR-WS. https://ceur-ws.org/Vol-3408/short-s2-07.pdf

Segal, J., & Morris, C. (2008). Developing scientific software. IEEE Software, 25(4), 18–20. https://doi.org/10.1109/MS.2008.85

Sletholt, M. T. et al. (2012). What do we know about scientific software development’s agile practices? Computing in Science & Engineering, 14(2), 24–37. https://doi.org/10.1109/MCSE.2011.113

Sotnikov, V. and Chaikova, A. (2023) Language Models for Multimessenger Astronomy, Galaxies, 11(3), 63. Available at: https://doi.org/10.3390/galaxies11030063.

Thomas, D., & Gross, A. (2025, February 16). Copyright battles loom over artists and AI. Financial Times. Retrieved April 24, 2025, from https://www.ft.com/content/185e2e9d-2642-4b2b-b2e0-99751841b07a

Thomas, R. J. & Thomson, T. J. (2023). What does a journalist look like? Visualizing journalistic roles through AI. Digital Journalism, 1–23. https://doi.org/10.1080/21670811.2023.2229883

Thomas, R. J. & Thomson, T. J. (2023). What does a journalist look like? Visualizing journalistic roles through AI. Digital Journalism, 1–23. https://doi.org/10.1080/21670811.2023.2229883

Vartiainen, H. & Tedre, M. (2023). Using artificial intelligence in craft education: Crafting with text-to-image generative models. Digital Creativity, 34(1), 1–21. https://doi.org/10.1080/14626268.2023.2174557

Villareale, J., Cimolino, G. & Gomme, D. (2023). Playing with Dezgo: Adapting human-AI interaction to the context of play. In Proceedings of the 18th International Conference on the Foundations of Digital Games (FDG ’23) (pp. 1–5). ACM. https://doi.org/10.1145/3582437.3587198

Wiedemann, D. (2022). CalcOPP: A program for the calculation of one-particle potentials (OPPs). Zeitschrift für Kristallographie – Crystalline Materials, 237(4–5), 85–92.

https://doi.org/10.1515/zkri-2021-2053

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Zhang, S. (2023). Dreambooth-based image generation methods for improving the performance of CNN. In 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI) (pp. 1181–1184). IEEE. https://doi.org/10.1109/ICETCI57876.2023.10176568

Zylinska, J. (2023). Art in the age of artificial intelligence. Science, 381(6654), 139–140. https://doi.org/10.1126/science.adh0575

Publicades

2025-06-30

Com citar

[1]
Queiroz, F. 2025. Comparació de l’ús de programari científic i eines d’art d’IA generativa: recerca exploratòria i agenda futura . INMATERIAL. Diseño, Arte y Sociedad. 10, 19 (Jun. 2025), 96–121 p. DOI:https://doi.org/10.46516/inmaterial.v10.240.